(k+2)(12k^3-3k^2+k+1)=

Simple and best practice solution for (k+2)(12k^3-3k^2+k+1)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (k+2)(12k^3-3k^2+k+1)= equation:


Simplifying
(k + 2)(12k3 + -3k2 + k + 1) = 0

Reorder the terms:
(2 + k)(12k3 + -3k2 + k + 1) = 0

Reorder the terms:
(2 + k)(1 + k + -3k2 + 12k3) = 0

Multiply (2 + k) * (1 + k + -3k2 + 12k3)
(2(1 + k + -3k2 + 12k3) + k(1 + k + -3k2 + 12k3)) = 0
((1 * 2 + k * 2 + -3k2 * 2 + 12k3 * 2) + k(1 + k + -3k2 + 12k3)) = 0
((2 + 2k + -6k2 + 24k3) + k(1 + k + -3k2 + 12k3)) = 0
(2 + 2k + -6k2 + 24k3 + (1 * k + k * k + -3k2 * k + 12k3 * k)) = 0
(2 + 2k + -6k2 + 24k3 + (1k + k2 + -3k3 + 12k4)) = 0

Reorder the terms:
(2 + 2k + 1k + -6k2 + k2 + 24k3 + -3k3 + 12k4) = 0

Combine like terms: 2k + 1k = 3k
(2 + 3k + -6k2 + k2 + 24k3 + -3k3 + 12k4) = 0

Combine like terms: -6k2 + k2 = -5k2
(2 + 3k + -5k2 + 24k3 + -3k3 + 12k4) = 0

Combine like terms: 24k3 + -3k3 = 21k3
(2 + 3k + -5k2 + 21k3 + 12k4) = 0

Solving
2 + 3k + -5k2 + 21k3 + 12k4 = 0

Solving for variable 'k'.

The solution to this equation could not be determined.

See similar equations:

| 2x+15=14x-2x+5 | | 4x+20=2x-30 | | -1/3w=-5 | | 3T+-8T=24 | | h^2+12h+27= | | -1/4a=-1 | | 9M-4=-2M+84 | | -3(x-2)=0.3 | | -2a=-26 | | 7-2n=2-14 | | 6n^2=49 | | (2z-1)(-z^2+3z-4)= | | -10w=20 | | 9M-4=2M+80 | | (2z-1)(-z+3z-4)= | | 14S=.021 | | -1/2a=6 | | 4y+5=2y+21 | | -.06R+5=23 | | 1/3w=2 | | E+8.31=4 | | (-3i)*(4i)*(-5i)=0 | | 7385-67x=3250 | | 3(2x+6)=x+20+3x | | 8G-8=G+.4 | | 4x^6+12x^5+9x^4=0 | | 8I+I=-.216 | | 5T=T+.052 | | (2z^4-3y)(2z^4-3y)= | | 8L-.6=5L+.012 | | 3.4A=510 | | 20+4x-4x=2x |

Equations solver categories